Publications

  1. AISTATS 2025
    Steering No-Regret Agents in MFGs under Model Uncertainty
    Leo Widmer, Jiawei Huang, and Niao He
    International Conference on Artificial Intelligence and Statistics, 2025
  2. ICLR 2025
    Learning to Steer Markovian Agents under Model Uncertainty
    Jiawei Huang, Vinzenz Thoma, Zebang Shen, Heinrich H. Nax, and Niao He
    International Conference on Learning Representations, 2025
  1. ICML 2024
    Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL
    Jiawei Huang, Niao He, and Andreas Krause
    International Conference on Machine Learning, 2024
  2. AISTATS 2024
    On the Statistical Efficiency of Mean Field Reinforcement Learning with General Function Approximation
    Jiawei Huang, Batuhan Yardim, and Niao He
    International Conference on Artificial Intelligence and Statistics, 2024
  1. NeurIPS 2023
    Robust Knowledge Transfer in Tiered Reinforcement Learning
    Jiawei Huang, and Niao He
    Advances in Neural Information Processing Systems, 2023
  1. NeurIPS 2022
    Tiered Reinforcement Learning: Pessimism in the Face of Uncertainty and Constant Regret
    Jiawei Huang, Li Zhao, Tao Qin, Wei Chen, Nan Jiang, and Tie-Yan Liu
    Advances in Neural Information Processing Systems, 2022
  2. ICML 2022
    (Long Oral)
    A Minimax Learning Approach to Off-Policy Evaluation in Confounded Partially Observable Markov Decision Processes
    Chengchun Shi, Masatoshi Uehara, Jiawei Huang, and Nan Jiang
    International Conference on Machine Learning, 2022
  3. ICLR 2022
    (Spotlight)
    Towards Deployment-Efficient Reinforcement Learning: Lower Bound and Optimality
    Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, and Tie-Yan Liu
    International Conference on Learning Representations, 2022
  4. AISTATS 2022
    On the Convergence Rate of Off-Policy Policy Optimization Methods with Density-Ratio Correction
    Jiawei Huang, and Nan Jiang
    International Conference on Artificial Intelligence and Statistics, 2022
  1. NeurIPS 2020
    Minimax Value Interval for Off-Policy Evaluation and Policy Optimization
    Nan Jiang, and Jiawei Huang
    Advances in Neural Information Processing Systems, 2020
  2. ICML 2020
    Minimax Weight and Q-Function Learning for Off-Policy Evaluation
    Masatoshi Uehara, Jiawei Huang, and Nan Jiang
    International Conference on Machine Learning, 2020
  3. ICML 2020
    From Importance Sampling to Doubly Robust Policy Gradient
    Jiawei Huang, and Nan Jiang
    International Conference on Machine Learning, 2020
  4. ECCV 2020
    Weightnet: Revisiting the design space of weight networks
    Ningning Ma, Xiangyu Zhang, Jiawei Huang, and Jian Sun
    European Conference on Computer Vision, 2020