Tiered Reinforcement Learning: Pessimistic in the Face of Uncertainty and Constant Regret

Jiawei Huang, Li Zhao, Tao Qin, Wei Chen, Nan Jiang, Tie-Yan Liu

Introduction

- RL has been applied in many applications with user interaction:
 - Medical Treatment
 - Recommendation System
 - Other Online Application Services

- The normal learning protocol (Fig. RHS)
 - Repeatedly:
 - **Policy Improvement:** Learn a policy from collected data
 - Collect New Data from Env: User comes; generate trajectories during interaction.

Introduction

However, users may have 'Tiered Structure': The users can be divided into 2 (or more) groups by their different preference on exploration risk.

- RL has been applied in many applications with user interaction:
 - Medical Treatment
 - Paid Volunteers v.s. Conservative Patients
 - Recommendation System
 - Paid Tester v.s. General Customers
 - Other Online Application Services
 Customers Using Free Services v.s. Paid VIP Customers

- The normal learning protocol (Fig. RHS)
 - Repeatedly:
 - **Policy Improvement:** Learn a policy from collected data
 - Collect New Data from Env: User comes; generate trajectories during interaction.

 G^{O} (short for Group^{Online}): risk-tolerant user group G^{E} (short for Group^{Exploit}): risk-averse user group

Introduction

However, users may have 'Tiered Structure': The users can be divided into 2 (or more) groups by their different preference on exploration risk.

- RL has been applied in many applications with user interaction:
 - Medical Treatment
 - Paid Volunteers v.s. Conservative Patients
 - Recommendation System

Paid Tester v.s. General Customers

Other Online Application Services
 Customers Using Free Services v.s. Paid VIP Customers

- The normal learning protocol (Fig. RHS)
 - Repeatedly:
 - **Policy Improvement:** Learn a policy from collected data
 - Collect New Data from Env: User comes; generate trajectories during interaction.
 - Users in different groups will be treated equivalently and suffer similar loss...

Normal Online RL Formulation

 G^{O} (short for Group^{Online}): risk-tolerant user group G^{E} (short for Group^{Exploit}): risk-averse user group

Tiered RL Framework

Initialize
$$D_1 \leftarrow \{\}$$
.
for $k = 1, 2, ..., K$ do
 $\begin{vmatrix} \pi_{O,k} \leftarrow Alg^O(D_k); \pi_{E,k} \leftarrow Alg^E(D_k). \\ \pi_{O,k}/\pi_{E,k} \text{ interacts with users in exploration/exploitation tier, and collect data } \tau_{O,k}/\tau_{E,k}. \\ D_{k+1} = D_k \cup \{\tau_{O,k}\} \cap \{\tau_{E,k}\}.$
end

Assume $Env^{O} = Env^{E}$; Relaxtion of this assumption leave to future work.

Tiered RL Framework

Initialize
$$D_1 \leftarrow \{\}$$
.
for $k = 1, 2, ..., K$ do
 $\begin{vmatrix} \pi_{O,k} \leftarrow Alg^O(D_k); \pi_{E,k} \leftarrow Alg^E(D_k). \\ \pi_{O,k}/\pi_{E,k} \text{ interacts with users in exploration/exploitation tier, and collect data } \tau_{O,k}/\tau_{E,k}. \\ D_{k+1} = D_k \cup \{\tau_{O,k}\} \cap \{\tau_{E,k}\}.$
end

• Objective

- Consider the pseudo-regret $Regret_{K}(\cdot)$:
 - $\operatorname{Regret}_{K}(\operatorname{Alg}^{E}) \coloneqq E\left[\sum_{k=1}^{K} V^{*}(s_{1}) V^{\pi_{k}^{E}}(s_{1})\right]; \quad \operatorname{Regret}_{K}(\operatorname{Alg}^{0}) \coloneqq E\left[\sum_{k=1}^{K} V^{*}(s_{1}) V^{\pi_{k}^{0}}(s_{1})\right].$
- Is it possible for $\text{Regret}_{K}(\text{Alg}^{E})$ to be strictly lower than any online learning algorithms in certain scenarios, while keeping $\text{Regret}_{K}(\text{Alg}^{O})$ near-optimal? Benefits for G^{E} under our framework.

Highlight of Main Results

Normal Tabular RL Setting

- No benefits by comparing with standard online RL (from minimax optimality perspective)
 - $\min_{\text{Alg}^{O},\text{Alg}^{E}} \max_{\text{MDP}} \text{Regret}(\text{Alg}^{E}) \ge O(\sqrt{H^{3}SAK})$

Minimax lower bound of normal online RL setting

Tabular RL with Strictly Positive Gap $\forall h, s, a: \Delta_h(s, a) = 0 \text{ or } \Delta_h(s, a) \ge \Delta_{min} > 0$ where $\Delta_h(s, a) \coloneqq V_h^*(s) - Q_h^*(s, a)$

- By choosing:
 - **P**essimistic Value Iteration (PVI) as Alg^E,
 - Arbitrary online algorithm with near-optimal regret as Alg⁰
- Guarantee
 - Regret_{*K*}(Alg⁰) keeps near-optimal.
 - Regret_{*K*}(Alg^E) is constant/independent of K.

In contrast with $O(\log K)$ lower bound in online setting

Why Pessimistic Value Iteration?

- Why Pessimism?
 - Key property [Jin et. al., 2021]:
 - The more optimal trajectories occurs in D_k , the smaller $V^* V^{\pi_k^{\text{PVI}}}$ would be

Why Pessimistic Value Iteration?

- Why Pessimism?
 - Key property [Jin et. al., 2021]:
 - The more optimal trajectories occurs in D_k , the smaller $V^* V^{\pi_k^{\text{PVI}}}$ would be

- Coincide with the optimality constraint of Alg⁰
 - Low regret of $Alg^0 \Leftrightarrow$ Faster accumulation of optimal trajectories in D_k

Why Pessimistic Value Iteration?

- Why Pessimism?
 - Key property [Jin et. al., 2021]:
 - The more optimal trajectories occurs in D_k , the smaller $V^* V^{\pi_k^{\text{PVI}}}$ would be

- Coincide with the optimality constraint of Alg⁰
 - Low regret of $Alg^0 \Leftrightarrow$ Faster accumulation of optimal trajectories in D_k

Thanks to strictly positive gap, $V^* - V^{\pi_k^{\text{PVI}}}$ will be zero after certain steps, which implies constant regret.

Verification Experiments in Tabular MDP

- S=A=H=5. Random generated transition/reward functions.
- Alg^O: StrongEulder [2]; Alg^E: PVI with Adaptive Bonus Term in [2]

[2] NeurIPS 2019, Max Simchowitz and Kevin Jamieson, Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs.

Thanks