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A “mediator” may exist, steering the agents’ behaviors by

M Ot ivat i O n providing additional rewards.

e.g. Financial subsidy by governments to companies.

* Agents following some typical learning dynamics may not always converge to

the desired policy

Question: How to design steering rewards?

* Two-Player Stag Hunt Game
* Two actions: H (Hunt) and G (Gather)
° Pay—off Matrix 1.0, No Steering \ 1.0, With Steering

Desired Equilibrium
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Steering Problem Setup

* Finite-Horizon N-Player Markov Games G := (N,S,A,s{, H,P, 1)
* State space S; Action space A = A! X - AV;
* Transition P; Rewardr := {r"}, ¢
 Policy w := (7}, ..., ™)
+ Total return J(7t|1) = Ex[X e ners T (Sno @iy - af )]
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* Markovian learning dynamics

Agents’ policy (Original) reward
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* Markovian learning dynamics

Agents’ policy (Original) reward

t
Vte [T], |mi4+1 ~-ﬂt,@.

Agents’ learning dynamics

 Subsume a broad class of policy-based methods
* Replicator dynamics, gradient descent, etc.

* Complementary to no-regret dynamics studied before (Zhang et. al., 2023)
* Consideredin a concurrent work (Canyakmaz et al., 2024)
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Steering Problem Setup

* Steering Markovian Agents for T steps

Vi e [7:]/ wy| ~ Py '|7717u17---:ﬂt—laut—laﬂ't): T+l ™ f('|7"t,’f' + ut)a

N

steering reward steering strategy

* Our goal
* [Primary] Agents’ Behavior /

« n8%l(m. ) ~ max n8°l(m), for some measure|n8°3! -7
A

Example 1: —||m — *||

Example 2: J(m|r)

* [Secondary] The steering cost
« NSt (my, ue) = J (e uy)
* We expect Y,cr ncest(m,, u,) is “reasonable”
e Steering dynamics as an MDP
» State ms; Action u;
« Transition f; Reward function n8°3 and n¢°st
* We can use Reinforcement Learning (RL) to learn i
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Practical Considerations

* Model uncertainty: true dynamics f* is unknown

* Amodel-based learning setup
« Amodelclass F, |F| < +oo available
* [Realizability Assumption] f* € F

* Non-episodic setup (“You can only steer once”)
« Cannotreset agents to “initial policy” again.
* Learn a history-dependent steering strategy

Key Question: How can we learn a good history-dependent
steering strategy under model uncertainty?
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Learning Objective

* Denote W as the collection of all history-dependent strategies

1
Pr e argmaxlpewmz: Ey,rlB - N8l (1rry4) — Z NSt (e, uy)]
fEF te[T]

* Proposition 3.3|(Under some assumptions) :
a& Example (Section 4)

1. mr4q under ™ approximately maximizes n5° F is a class of “distinguishable”
2. P*is “pareto-optimal” for n8°3 and ncost, policy mirror descent dynamics.

 Main Challenge: Learning history-dependent policy



Solving Main Objective

. 1
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* APOMDP perspective

* Hidden state is x; = (f, ), but only o, = 7, is revealed.



Solving Main Objective

" 1
Y" < argmaxyey i Xrer By [ N8 (r11) = Neerry 190 (7, 1)

° I ° I
Scenario 1: |F| is small - argmaxyewEy,p-unitormesy [ - TN (M a1) — Socqr 10 e 1)

* APOMDP perspective

* Hidden state is x; = (f, ), but only o, = 7, is revealed.

* Learn a belief-state based y instead

 Belief states is posterior distribution of f
« Easyto compute when |F| is small



Solving Main Objective

. 1
Y« argmaxzpenpﬁZfegc Ey,rlB - n8%l(mr ) — Zte[T] NSt (e, uy)]

» Scenario 2: |F| is large

* Exact solutionisintractable in general,;



Solving Main Objective

. 1
Y« argmaxlpexpﬁZfegc Ey,rlB - n8%l(mr ) — ZtE[T] oSt (e, uy)]

» Scenario 2: |F| is large

* Exact solutionisintractable in general,;
* Trade-off tractability and optimality

* AFirst-Explore-Then-Exploit Framework
* Explore and estimate f* in the first Ty steps

* Deploy optimal strategy in f* fortherest T — T, steps
* Only learn history-dependent strategy for Ty steps



Experiments

* Empirical verification of proposed methods for two scenarios

e See Section 6 for more details
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Summary

* We study steering Markovian agents under model uncertainty

* Take Aways
* Formulation for steering Markovian agents
* Alearning objective with guarantees

* Algorithms overcoming challenges in learning history-dependent strategies
(with empirical evaluation)

* Future works
* Better objective function?
* Non-Markovian agents?
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