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Steering Problem Setup

• Finite-Horizon 𝑁-Player Markov Games 𝐺 ≔ (𝑁, 𝒮, 𝒜, 𝑠1, 𝐻, ℙ, 𝑟)
• State space 𝒮;  Action space 𝒜 ≔ 𝒜1 × ⋯ 𝒜𝑁; 
• Transition ℙ;    Reward 𝒓 ≔ 𝑟𝑛

𝑛∈[𝑁], 
• Policy 𝝅 ≔ (𝜋1, … , 𝜋𝑁)

• Total return 𝐽 𝝅|𝒓 ≔ 𝔼𝝅[σ𝑛∈ 𝑁 ,ℎ∈[𝐻] 𝑟ℎ
𝑛 𝑠ℎ, 𝑎ℎ

1 , … , 𝑎ℎ
𝑁 ]
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Steering Problem Setup

• Markovian learning dynamics

• Subsume a broad class of policy-based methods
• Replicator dynamics, gradient descent, etc.

• Complementary to no-regret dynamics studied before (Zhang et. al., 2023)
• Considered in a concurrent work (Canyakmaz et al., 2024)
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Agents’ learning dynamics
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• We expect σ𝑡∈[𝑇] 𝜂cost(𝝅𝑡 , 𝒖𝑡) is “reasonable”

• Steering dynamics as an MDP
• State 𝝅𝑡; Action 𝒖𝑡

• Transition 𝑓; Reward function 𝜂goal and 𝜂cost

• We can use Reinforcement Learning (RL) to learn 𝜓𝑡
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Practical Considerations

• Model uncertainty: true dynamics 𝑓∗ is unknown
• A model-based learning setup
• A model class ℱ, ℱ < +∞ available
• [Realizability Assumption] 𝑓∗ ∈ ℱ

• Non-episodic setup (“You can only steer once”)
• Can not reset agents to “initial policy” again.
• Learn a history-dependent steering strategy 𝜓

Key Question: How can we learn a good history-dependent 
steering strategy under model uncertainty?
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• Denote Ψ as the collection of all history-dependent strategies

𝜓∗ ← argmax𝜓∈Ψ
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• Proposition 3.3 (Under some assumptions)
1.  𝝅𝑇+1 under 𝜓∗ approximately maximizes 𝜂goal

2.  𝜓∗ is “pareto-optimal” for 𝜂goal and 𝜂cost.
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1.  𝝅𝑇+1 under 𝜓∗ approximately maximizes 𝜂goal
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• Main Challenge: Learning history-dependent policy

Example (Section 4)
ℱ is a class of “distinguishable” 
policy mirror descent dynamics.



Solving Main Objective

• Scenario 1: ℱ  is small

• A POMDP perspective
• Hidden state is 𝑥𝑡 = 𝑓, 𝝅𝑡 , but only 𝑜𝑡 = 𝜋𝑡 is revealed.
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Solving Main Objective

• Scenario 2: ℱ  is large

• Exact solution is intractable in general; 

• Trade-off tractability and optimality

• A First-Explore-Then-Exploit Framework
• Explore and estimate መ𝑓∗ in the first 𝑇0 steps
• Deploy optimal strategy in መ𝑓∗ for the rest 𝑇 − 𝑇0 steps
• Only learn history-dependent strategy for 𝑇0 steps

𝜓∗ ← argmax𝜓∈Ψ
1

ℱ
σ𝑓∈ℱ 𝔼𝜓,𝑓[𝛽 ⋅ 𝜂goal 𝝅𝑇+1 − σ𝑡∈[𝑇] 𝜂cost(𝝅𝑡, 𝒖𝑡)]



Experiments

• Empirical verification of proposed methods for two scenarios

• See Section 6 for more details
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Summary

• We study steering Markovian agents under model uncertainty

• Take Aways
• Formulation for steering Markovian agents
• A learning objective with guarantees
• Algorithms overcoming challenges in learning history-dependent strategies
    (with empirical evaluation)

• Future works
• Better objective function?
• Non-Markovian agents?
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