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Reinforcement Learning (RL) in a Nutshell

• Learn to make good decisions from interactions with an uncertain environment.
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Example

• Learn to make good decisions from interactions with an uncertain environment.
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Mathematical Framework for Finite-Horizon RL
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From One to Many: the Multi-Agent RL Setup

Multi-Agent RL

Action: 𝑎!"~𝜋!"

…

State: 𝑠!"; Reward: 𝑟!"
Action: 𝑎!#~𝜋!#

State: 𝑠!#; Reward: 𝑟!#

Action: 𝑎!
$~𝜋!

$

State: 𝑠!
$ ; Reward: 𝑟!

$

For agent 𝑛 = 1,2, … , 𝑁
(𝑠!")′ ∼ 𝑃"	(⋅ |𝑠!#, … , 𝑠!$, 𝑎!# , … , 𝑎!$)
							𝑟!" ∼ 𝑟"(𝑠!#, … , 𝑠!$, 𝑎!# , … , 𝑎!$)

𝑵 Agents Environment
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Challenges in Large-Population Multi-Agent RL

Multi-Agent RL
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$

For agent 𝑛 = 1,2, … , 𝑁
(𝑠!")′ ∼ 𝑃"	(⋅ |𝑠!#, … , 𝑠!$, 𝑎!# , … , 𝑎!$)
							𝑟!" ∼ 𝑟"(𝑠!#, … , 𝑠!$, 𝑎!# , … , 𝑎!$)

𝑵 Agents Environment

Curse of Multi-Agency
• The complexity of the system scales

exponentially as the number of agents.

Curse of Computational Intractability
• Different from single-agent RL, we are

interested in Nash Equilibrium (NE) policies.
- At NE, no agent has incentives to

deviate from their current policy.
• Computing NE for is PPAD-complete even for

three players (Daskalakis et al., 2009).
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Breaking the Curses by the Blessing of Symmetricity

• Agents: drivers/cars;
• Actions: which routes to choose;
• The more drivers in one route, the longer time it takes;
• Special Structure: Large population and symmetric agents.

- Not important: which agent take which route?
- Important: what proportion of agents take each route?
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Breaking the Curses by the Blessing of Symmetricity

Mean-Field Games (MFGs)Multi-Agent RL

𝑁	 → 	∞

Symmetrization

Action: 𝑎!"~𝜋!"

…

State: 𝑠!"; Reward: 𝑟!"
Action: 𝑎!#~𝜋!#

State: 𝑠!#; Reward: 𝑟!#

Action: 𝑎!
$~𝜋!

$

State: 𝑠!
$ ; Reward: 𝑟!

$

Action 𝑎!	~	𝜋!

State 𝑠!; Reward 𝑟!
Population density 𝜇!" ∈ Δ(𝒮);

For agent 𝑛 = 1,2, … , 𝑁
(𝑠!")′ ∼ 𝑃"	(⋅ |𝑠!#, … , 𝑠!$, 𝑎!# , … , 𝑎!$)
							𝑟!" ∼ 𝑟"(𝑠!#, … , 𝑠!$, 𝑎!# , … , 𝑎!$)

For a representative agent
s!% ∼ 𝑃	(⋅ |𝑠!, 𝑎!, 𝜇!&)
𝑟! ∼ 𝑟(𝑠!, 𝑎!, 𝜇!&)

[Huang, Malhame, Caines’06, Lasry & Lions’05]

𝑵 Agents Environment 𝑵 Agents Environment
…
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Breaking the Curses by the Blessing of Symmetricity

Breaking the Curse of Multi-Agency
• transition and reward functions no longer depend on the number of agents.

Breaking the Curse of Computational Intractability
• NE can be computed efficienctly under some conditions (known transition/reward)

- Contractivity (Guo et al., 2019; Yardim et al., 2023)
- Monotonicity (Perolat et al., 2021; Zhang et al., 2024)
- Sub-modularity (Dianetti et al., 2021)
- ...
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(Finite-Horizon) Mean-Field Games

Basic Setup
• M := (S,A, µ1, H,P, r)
• S and A: state and action space;
• µ1 ∈ ∆(S): initial state distribution;
• H: finite horizon;
• P := {Ph}H

h=1, r := {rh}H
h=1: non-stationary transition and reward functions.
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(Finite-Horizon) Mean-Field Games

Policy and Agents-Environment Interaction
• M := (S,A, µ1, H,P, r)
• All the agents share a non-stationary policy π := {πh}H

h=1, πh : S → ∆(A);
• Only need to focus on a representative agent

• Start with s1 ∼ µ1, for h = 1, ..., H
- Take action ah ∼ πh(·|sh)
- Observe next state sh+1 ∼ Ph(·|sh, ah, µ

π
h), and reward rh ← rh(sh, ah, µ

π
h)

- State density involves

µπ
1 (·) :=µ1(·)

µπ
h+1(·) :=

∑
sh∈S,ah∈A

µπ
h(sh)πh(ah|sh)Ph(·|sh, ah, µ

π
h).
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(Finite-Horizon) Mean-Field Games

Learning objective: the Nash Equilibrium (NE)
• M := (S,A, µ1, H,P, r)
• Definition: total return of a deviating agent taking π′ while the other stick to π:

JM (π′, π) := E

[
H∑

h=1

rh

∣∣∣ ∀h, ah∼π′
h

(·|sh),

sh+1∼Ph(·|sh,ah,µπ
h

), rh←rh(sh,ah,µπ
h

)

]
.

• Policy πNE
M is a NE of M if:

∀π, JM (πNE
M , πNE

M ) ≥ JM (π, πNE
M ). (No incentive to deviate)

• Policy π̂NE
M is an ε-NE of M if:

∀π, JM (π̂NE
M , π̂NE

M ) ≥ JM (π, π̂NE
M )− ε. (ε-incentive to deviate)
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Key Question to Address in this Work

Practical Considerations
• Model Uncertainty

- True MFGs model (P and r) may be unknown.
- Need to estimate from interaction samples.
- Generating samples can be costly (sample complexity matters).
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Key Question to Address in this Work

Practical Considerations
• Model Uncertainty
• Function Approximation

- Rich state and action spaces (large S,A)
- Model/value functions depend on density (∈ uncountable set).

- To estimate model/value functions
* Tabular representation is not efficient

(scales as |S|, |A| and covering number of ∆(S))
* We need function approximations (e.g. neural networks).

- Theoretical formulation:
* A set of functions are available to approximate true model/optimal value.
* The sample complexity would depend on complexity of function class.

Department of Computer Science 16/41



Key Question to Address in this Work

Practical Considerations
• Model Uncertainty
• Function Approximation

- Rich state and action spaces (large S,A)
- Model/value functions depend on density (∈ uncountable set).
- To estimate model/value functions

* Tabular representation is not efficient
(scales as |S|, |A| and covering number of ∆(S))

* We need function approximations (e.g. neural networks).

- Theoretical formulation:
* A set of functions are available to approximate true model/optimal value.
* The sample complexity would depend on complexity of function class.

Department of Computer Science 16/41



Key Question to Address in this Work

Practical Considerations
• Model Uncertainty
• Function Approximation

- Rich state and action spaces (large S,A)
- Model/value functions depend on density (∈ uncountable set).
- To estimate model/value functions

* Tabular representation is not efficient
(scales as |S|, |A| and covering number of ∆(S))

* We need function approximations (e.g. neural networks).
- Theoretical formulation:

* A set of functions are available to approximate true model/optimal value.
* The sample complexity would depend on complexity of function class.

Department of Computer Science 16/41



Key Question to Address in this Work

Practical Considerations
• Model Uncertainty
• Function Approximation

Literature Previous to our work and Limitations

Unknown Model ? Non-Tabular Setting ? Other Remarks
(Huang et al., 2006)

(Lasry and Lions, 2007)
(Bensoussan et al., 2013) ✗ ✗

(Guo et al., 2019)
(Perolat et al., 2021) ✓ ✗

Require additional
structural assumptions

(Pasztor et al., 2021) ✓ ✓

Mean-Field Control Setting
(“Cooperative” MFGs)
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Key Question to Address in this Work

What is the sample complexity for solving NE in MFGs with RL
with general function approximation?

Challenges
• How to do strategic exploration?
• Due to MFGs’ special structure, previous results in single-agent RL or Markov Games are not

directly appliable.
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Setting and Assumptions

Model-Based Function Approximation Setting
• For convenience, assume true reward r∗ is known (can be extended to unknown reward setting)
• A model function classM = {M1,M2, ...,M|M|} is available, Mi := {PMi,h}h∈[H].

Assumptions
1. Realizability: The true model M∗ := {PM∗,h}h∈[H] ∈M
2. Lipschitz Continuity in Density: ∀M ∈M, ∀h, sh, ah, ∀µ, µ′ ∈ ∆(S)

∥PM,h(·|sh, ah, µ)− PM,h(·|sh, ah, µ
′)∥1 ≤LT ∥µ− µ′∥1,

|r∗h(sh, ah, µ)− r∗h(sh, ah, µ
′)| ≤Lr∥µ− µ′∥1.

Data Collection Oracle (Centralized MFGs)
• Given any two policies π and π′, we assume an oracle can return a trajectory generated by

ah ∼ π′h(·|sh), rh ← r∗h(sh, ah, µ
π
M∗,h), sh+1 ∼ PM∗,h(·|sh, ah, µ

π
M∗,h).

• ≈ the trajectory of one agent taking π′ while the others take π in finite N -agent system.
• Sample complexity := number of queries to the oracle
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Function Approximation Complexity Measure

Rich Literature in Single-Agent Setting
• Eluder Dimension (Levy et al., 2022; Osband and Van Roy, 2014; Russo and Van Roy, 2013)
• Bellman Rank/Witness Rank (Jiang et al., 2017; Sun et al., 2019)
• Bellman Eluder Dimension (Jin et al., 2021)
• Low-Rank MDP (Agarwal et al., 2020; Uehara et al., 2021)
• Bilinear Rank (Du et al., 2021)
• Decision to Estimation Coefficient (Foster et al., 2021)
• Coverage Coefficient (Xie et al., 2022)
• ...
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Function Approximation Complexity Measure

For Mean-Field model classM, we get inspired from
• Eluder Dimension (Levy et al., 2022; Osband and Van Roy, 2014; Russo and Van Roy, 2013)

- Denote as dimE(M);
- (To make life easier, we omit its formal definition here).
- Similar to VC-dimension, measures the complexity (expressive power) ofM.

Is Sample Complexity Scaling with Complexity ofM Good Enough?
• Different from single-agent setting, the transition functions are defined on S ×A×∆(S).
• The complexity ofM can be extremely high:

- In the worst cases, dimE(M) is exponential in exp(|S|).
• Can we do better?
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Main Result

Theorem (Informal)
Given a Mean-Field model classM, satisfying Realizability and Lipschitz continuity assumptions,
learning an ε-NE with probability 1− δ only consumes samples at most:

Õ(Poly(dimPE(M), H, 1 + LT , Lr,
1
ε
, log |M|

δ
))

A New Complexity Measure: Partial Model-Based Eluder Dimension (dimPE(M))
• Given an arbitrary policy π, define

M|π := {M|π|M ∈M}

with M|π := {PM,h(·|·, ·, µπ
M,h)}h∈[H].

• dimPE(M) := maxπ dimE(M|π).
• Essentially, dimPE(M) measures the complexity of the single-agent model classM|π for some

(adversarially) chosen π.
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Main Result

Theorem (Informal)
Given a Mean-Field model classM, satisfying Realizability and Lipschitz continuity assumptions,
learning an ε-NE with probability 1− δ only consumes samples at most:

Õ(Poly(dimPE(M), H, 1 + LT , Lr,
1
ε
, log |M|

δ
))

Interpretation: Model-Based RL for MFGs is not Statistically Harder than Single-Agent RL

• dimPE(M) ≤ |S||A|
- Tabular MFGs is sample-efficient in general.

• Linear dynamics: PM,h(sh+1|sh, ah, µh) = ϕ(sh, ah)⊤Uh(µh)ψ(sh+1)

- ϕ ∈ Rd, U ∈ Rd×d′
, ψ ∈ Rd′ .

- In general d′ ≫ d; dimPE(M) = Õ(d), while dimE(M) = Õ(d′).
• Not computationally efficient for now.
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A Model-Elimination Based Algorithms

Algorithm Sketch
For k = 1, 2, ..., (start withM1 :=M)

1. Find a desired policy πk

2. ConstructMk
|πk := {M|πk |M ∈Mk}.

i.e. fix the density with πk for each M ∈Mk.
3. Collect samples andMk+1 ← {M ∈Mk|M|πk ≈M∗πk}.
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– all the agent take πk except one doing exploration
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A Model-Elimination Based Algorithms

Algorithm Sketch
For k = 1, 2, ..., (start withM1 :=M)

1. Find a desired policy πk – the key step
2. ConstructMk

|πk := {M|πk |M ∈Mk}.
i.e. fix the density with πk for each M ∈Mk.

3. Collect samples andMk+1 ← {M ∈Mk|M|πk ≈M∗πk}
– the only step we collect samples
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Key Step: How to Choose πk for Fast Elimination?

Consider 𝜖-cover for policy space Π! ≔ {𝜋!", 𝜋!#…}

Model difference

Visualization of ℳ|"!"
#

(dots represent models in ℳ|"!"
# )

𝑀′|"!"

𝑀|"!"
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Model difference

Visualization of ℳ|"!#
#

(dots represent models in ℳ|"!#
# )

Visualization of ℳ|"!$
#

(dots represent models in ℳ|"!$
# )
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Key Step: How to Choose πk for Fast Elimination?

Case 1: Non-concentrated setting

Consider 𝜖-cover for policy space Π! ≔ {𝜋!", 𝜋!#…}

…

Visualization of ℳ|"!"
#

(dots represent models in ℳ|"!"
# ))

No large cluster…

Model difference

Visualization of ℳ|"!#
#

(dots represent models in ℳ|"!#
# )

Visualization of ℳ|"!$
#

(dots represent models in ℳ|"!$
# )
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𝐂𝐥𝐮𝐬𝐭𝐞𝐫𝟐

• ∃πi
ε ∈ Πε, s.t. no O(ε)-cluster with more than |M

k|
2 models.

• By choosing πk ← πi
ε, only models surrounds M∗|πi

ε
remains

• Therefore, |Mk+1| ≤ |M
k|

2 .
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Key Step: How to Choose πk for Fast Elimination?
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…

• ∀πi
ε ∈ Πε, there exists an O(ε)-cluster with more than |M

k|
2 models.

• Thanks to Lipschitz continuity
1. Local alignment lemma: If M|π ≈M∗|π and π ≈ NE of M , then π ≈ NE of M∗

2. “Fixed point” structure: ∃πi
ε ∈ Πε, s.t. πi

ε ≈ NE of all models in that O(ε)-cluster.
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By choosing πk = πi
ε, run model-elimination and getMk+1:

• If Clusteri ∩Mk+1 ̸= ∅:
M∗|πi

ε
∈ Clusteri, and therefore, πi

ε ≈ NE of M∗.

• If Clusteri ∩Mk+1 = ∅:
|Mk+1| ≤ |M

k|
2 because of the size of that cluster.
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Put Everything Together

Case 1: Non-concentrated setting

• Every time |Mk+1| ≤ |M
k|

2

Case 2: Concentrated setting

• Either find a NE or |Mk+1| ≤ |M
k|

2 .

Conclusion
• O(log |M|) elimination steps at most.
• Each elimination costs Poly(dimE(Mk

|πk )) = Poly(dimPE(M)) samples.

• Q.E.D.
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Summary

Take Aways
• A new complexity measure: Partial Model-Based Eluder Dimension;
• A new model elimination based RL algorithm for centralized MFGs;

Under realizability and Lipschitz conditions, Model-Based RL for
centralized MFGs is not Statistically Harder than Single-Agent RL.

Future Directions
• Computational efficiency;
• Decentralized setting;
• Equilibrium selection, steering, mechanism design.
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