

On the Sample Efficiency of Reinforcement Learning for Mean-Field Games

Jiawei Huang January 13, 2025

Outline

- 1. Introduction
- 2. Mean-Field Games
- 3. Main Results
- 4. Algorithm and Proof Sketch
- 5. Summary

Outline

1. Introduction

- 2. Mean-Field Games
- 3. Main Results
- 4. Algorithm and Proof Sketch
- 5. Summary

Reinforcement Learning (RL) in a Nutshell

• Learn to make good decisions from interactions with an uncertain environment.

Example

• Learn to make good decisions from interactions with an uncertain environment.

Mathematical Framework for Finite-Horizon RL

From One to Many: the Multi-Agent RL Setup

147 11

ETH zürich

Challenges in Large-Population Multi-Agent RL

Curse of Multi-Agency

 The complexity of the system scales exponentially as the number of agents.

Multi-Agent RL

 $r_h^n \sim r^n(s_h^1, \dots, s_h^N, a_h^1, \dots, a_h^N)$

Challenges in Large-Population Multi-Agent RL

Curse of Multi-Agency

• The complexity of the system scales exponentially as the number of agents.

Curse of Computational Intractability

- Different from single-agent RL, we are interested in Nash Equilibrium (NE) policies.
 - At NE, no agent has incentives to deviate from their current policy.

ETH zürich

Challenges in Large-Population Multi-Agent RL

Curse of Multi-Agency

• The complexity of the system scales exponentially as the number of agents.

Curse of Computational Intractability

- Different from single-agent RL, we are interested in Nash Equilibrium (NE) policies.
 - At NE, no agent has incentives to deviate from their current policy.
- Computing NE for is PPAD-complete even for three players (Daskalakis et al., 2009).

Breaking the Curses by the Blessing of Symmetricity

- Agents: drivers/cars:
- Actions: which routes to choose:
- The more drivers in one route, the longer time it takes;
- Special Structure: Large population and symmetric agents.
 - Not important: which agent take which route?
 - Important: what proportion of agents take each route?

Breaking the Curses by the Blessing of Symmetricity

ETH zürich

Breaking the Curses by the Blessing of Symmetricity

Breaking the Curse of Multi-Agency

• transition and reward functions no longer depend on the number of agents.

Breaking the Curse of Computational Intractability

- NE can be computed efficienctly under some conditions (known transition/reward)
 - Contractivity (Guo et al., 2019; Yardim et al., 2023)
 - Monotonicity (Perolat et al., 2021; Zhang et al., 2024)
 - Sub-modularity (Dianetti et al., 2021)
 - ...

Outline

1. Introduction

2. Mean-Field Games

- 3. Main Results
- 4. Algorithm and Proof Sketch
- 5. Summary

Basic Setup

- $M := (\mathcal{S}, \mathcal{A}, \mu_1, H, \mathbb{P}, r)$
- S and A: state and action space;
- $\mu_1 \in \Delta(S)$: initial state distribution;
- *H*: finite horizon;
- $\mathbb{P} := {\mathbb{P}_h}_{h=1}^H$, $r := {r_h}_{h=1}^H$: non-stationary transition and reward functions.

Policy and Agents-Environment Interaction

- $M := (\mathcal{S}, \mathcal{A}, \mu_1, H, \mathbb{P}, r)$
- All the agents share a non-stationary policy $\pi := {\pi_h}_{h=1}^H, \pi_h : S \to \Delta(\mathcal{A});$
- Only need to focus on a representative agent

Policy and Agents-Environment Interaction

- $M := (\mathcal{S}, \mathcal{A}, \mu_1, H, \mathbb{P}, r)$
- All the agents share a non-stationary policy $\pi := \{\pi_h\}_{h=1}^H, \pi_h : S \to \Delta(\mathcal{A});$
- Only need to focus on a representative agent
- Start with $s_1 \sim \mu_1$, for h = 1, ..., H
 - Take action $a_h \sim \pi_h(\cdot|s_h)$
 - Observe next state $s_{h+1} \sim \mathbb{P}_h(\cdot|s_h, a_h, \mu_h^{\pi})$, and reward $r_h \leftarrow r_h(s_h, a_h, \mu_h^{\pi})$
 - State density involves

$$\mu_{h+1}^{\pi}(\cdot) := \mu_1(\cdot)$$
$$\mu_{h+1}^{\pi}(\cdot) := \sum_{s_h \in S, a_h \in \mathcal{A}} \mu_h^{\pi}(s_h) \pi_h(a_h|s_h) \mathbb{P}_h(\cdot|s_h, a_h, \mu_h^{\pi})$$

Learning objective: the Nash Equilibrium (NE)

- $M := (\mathcal{S}, \mathcal{A}, \mu_1, H, \mathbb{P}, r)$
- **Definition**: total return of a deviating agent taking π' while the other stick to π :

$$J_M(\pi',\pi) := \mathbb{E}\left[\sum_{h=1}^H r_h \Big|_{\substack{s_{h+1} \sim \mathbb{P}_h(\cdot|s_h, a_h, \mu_h^{\pi}), \ r_h \leftarrow r_h(s_h, a_h, \mu_h^{\pi})}}\right].$$

• Policy π_M^{NE} is a NE of M if:

 $\forall \pi, \quad J_M(\pi_M^{\mathsf{NE}}, \pi_M^{\mathsf{NE}}) \ge J_M(\pi, \pi_M^{\mathsf{NE}}). \tag{No incentive to deviate}$

- Policy $\widehat{\pi}_{M}^{\rm NE}$ is an $\varepsilon\text{-NE}$ of M if:

$$\forall \pi, \quad J_M(\widehat{\pi}_M^{\mathsf{NE}}, \widehat{\pi}_M^{\mathsf{NE}}) \ge J_M(\pi, \widehat{\pi}_M^{\mathsf{NE}}) - \varepsilon. \qquad \qquad (\varepsilon \text{-incentive to deviate})$$

- Model Uncertainty
 - True MFGs model (\mathbb{P} and r) may be unknown.
 - Need to estimate from interaction samples.
 - Generating samples can be costly (sample complexity matters).

- Model Uncertainty
- Function Approximation
 - Rich state and action spaces (large S, A)
 - Model/value functions depend on density (∈ uncountable set).

- Model Uncertainty
- Function Approximation
 - Rich state and action spaces (large $\mathcal{S},\mathcal{A})$
 - Model/value functions depend on density (\in uncountable set).
 - To estimate model/value functions
 - * Tabular representation is not efficient (scales as |S|, |A| and covering number of $\Delta(S)$)
 - * We need function approximations (e.g. neural networks).

- Model Uncertainty
- Function Approximation
 - Rich state and action spaces (large $\mathcal{S},\mathcal{A})$
 - Model/value functions depend on density (∈ uncountable set).
 - To estimate model/value functions
 - * Tabular representation is not efficient (scales as |S|, |A| and covering number of $\Delta(S)$)
 - * We need function approximations (e.g. neural networks).
 - Theoretical formulation:
 - * A set of functions are available to approximate true model/optimal value.
 - * The sample complexity would depend on complexity of function class.

Practical Considerations

- Model Uncertainty
- Function Approximation

Literature Previous to our work and Limitations

	Unknown Model ?	Non-Tabular Setting ?	Other Remarks
(Huang et al., 2006)			
(Lasry and Lions, 2007)			
(Bensoussan et al., 2013)	×	×	
(Guo et al., 2019)			Require additional
(Perolat et al., 2021)	1	×	structural assumptions
			Mean-Field Control Setting
(Pasztor et al., 2021)	✓	✓	("Cooperative" MFGs)

What is the **sample complexity** for solving **NE** in MFGs with RL with **general function approximation**?

Challenges

- How to do strategic exploration?
- Due to MFGs' special structure, previous results in single-agent RL or Markov Games are not directly appliable.

Outline

1. Introduction

2. Mean-Field Games

3. Main Results

4. Algorithm and Proof Sketch

5. Summary

Setting and Assumptions

Model-Based Function Approximation Setting

- For convenience, assume true reward r* is known (can be extended to unknown reward setting)
- A model function class $\mathcal{M} = \{M_1, M_2, ..., M_{|\mathcal{M}|}\}$ is available, $M_i := \{\mathbb{P}_{M_i,h}\}_{h \in [H]}$.

Setting and Assumptions

Model-Based Function Approximation Setting

- For convenience, assume true reward r* is known (can be extended to unknown reward setting)
- A model function class $\mathcal{M} = \{M_1, M_2, ..., M_{|\mathcal{M}|}\}$ is available, $M_i := \{\mathbb{P}_{M_i,h}\}_{h \in [H]}$.

Assumptions

- 1. Realizability: The true model $M^* := \{\mathbb{P}_{M^*,h}\}_{h \in [H]} \in \mathcal{M}$
- 2. Lipschitz Continuity in Density: $\forall M \in \mathcal{M}, \forall h, s_h, a_h, \forall \mu, \mu' \in \Delta(\mathcal{S})$

$$\begin{aligned} \|\mathbb{P}_{M,h}(\cdot|s_h, a_h, \mu) - \mathbb{P}_{M,h}(\cdot|s_h, a_h, \mu')\|_1 \leq L_T \|\mu - \mu'\|_1, \\ |r_h^*(s_h, a_h, \mu) - r_h^*(s_h, a_h, \mu')| \leq L_r \|\mu - \mu'\|_1. \end{aligned}$$

Setting and Assumptions

Model-Based Function Approximation Setting

- For convenience, assume true reward r* is known (can be extended to unknown reward setting)
- A model function class $\mathcal{M} = \{M_1, M_2, ..., M_{|\mathcal{M}|}\}$ is available, $M_i := \{\mathbb{P}_{M_i,h}\}_{h \in [H]}$.

Assumptions

- 1. **Realizability**: The true model $M^* := \{\mathbb{P}_{M^*,h}\}_{h \in [H]} \in \mathcal{M}$
- 2. Lipschitz Continuity in Density: $\forall M \in \mathcal{M}, \forall h, s_h, a_h, \forall \mu, \mu' \in \Delta(\mathcal{S})$

$$\begin{aligned} \|\mathbb{P}_{M,h}(\cdot|s_h, a_h, \mu) - \mathbb{P}_{M,h}(\cdot|s_h, a_h, \mu')\|_1 \leq L_T \|\mu - \mu'\|_1, \\ |r_h^*(s_h, a_h, \mu) - r_h^*(s_h, a_h, \mu')| \leq L_r \|\mu - \mu'\|_1. \end{aligned}$$

Data Collection Oracle (Centralized MFGs)

• Given any two policies π and π' , we assume an oracle can return a trajectory generated by

$$a_h \sim \pi'_h(\cdot|s_h), \ r_h \leftarrow r_h^*(s_h, a_h, \mu_{M^*, h}^{\pi}), \ s_{h+1} \sim \mathbb{P}_{M^*, h}(\cdot|s_h, a_h, \mu_{M^*, h}^{\pi}).$$

- \approx the trajectory of one agent taking π' while the others take π in finite N-agent system.
- Sample complexity := number of queries to the oracle

Rich Literature in Single-Agent Setting

- Eluder Dimension (Levy et al., 2022; Osband and Van Roy, 2014; Russo and Van Roy, 2013)
- Bellman Rank/Witness Rank (Jiang et al., 2017; Sun et al., 2019)
- Bellman Eluder Dimension (Jin et al., 2021)
- Low-Rank MDP (Agarwal et al., 2020; Uehara et al., 2021)
- Bilinear Rank (Du et al., 2021)
- Decision to Estimation Coefficient (Foster et al., 2021)
- Coverage Coefficient (Xie et al., 2022)

• ...

For Mean-Field model class \mathcal{M} , we get inspired from

- Eluder Dimension (Levy et al., 2022; Osband and Van Roy, 2014; Russo and Van Roy, 2013)
 - Denote as dimE(\mathcal{M});
 - (To make life easier, we omit its formal definition here).
 - Similar to VC-dimension, measures the complexity (expressive power) of M.

For Mean-Field model class $\ensuremath{\mathcal{M}}$, we get inspired from

- Eluder Dimension (Levy et al., 2022; Osband and Van Roy, 2014; Russo and Van Roy, 2013)
 - Denote as dim $E(\mathcal{M})$;
 - (To make life easier, we omit its formal definition here).
 - Similar to VC-dimension, measures the complexity (expressive power) of \mathcal{M} .

Is Sample Complexity Scaling with Complexity of ${\mathcal M}$ Good Enough?

For Mean-Field model class $\ensuremath{\mathcal{M}}$, we get inspired from

- Eluder Dimension (Levy et al., 2022; Osband and Van Roy, 2014; Russo and Van Roy, 2013)
 - Denote as dimE(\mathcal{M});
 - (To make life easier, we omit its formal definition here).
 - Similar to VC-dimension, measures the complexity (expressive power) of \mathcal{M} .

Is Sample Complexity Scaling with Complexity of ${\mathcal M}$ Good Enough?

- Different from single-agent setting, the transition functions are defined on $S \times A \times \Delta(S)$.
- The complexity of ${\mathcal M}$ can be extremely high:
 - In the worst cases, dimE(\mathcal{M}) is exponential in $\exp(|\mathcal{S}|)$.
- Can we do better?

Theorem (Informal)

Given a Mean-Field model class M, satisfying Realizability and Lipschitz continuity assumptions, learning an ε -NE with probability $1 - \delta$ only consumes samples at most:

$$\widetilde{O}(\textit{Poly}(\textit{dimPE}(\mathcal{M}), H, 1 + L_T, L_r, \frac{1}{\varepsilon}, \log \frac{|\mathcal{M}|}{\delta}))$$

A New Complexity Measure: Partial Model-Based Eluder Dimension (dimPE(M))

• Given an arbitrary policy π , define

$$\mathcal{M}_{|\pi} := \{ M_{|\pi} | M \in \mathcal{M} \}$$

with $M_{|\pi} := \{ \mathbb{P}_{M,h}(\cdot|\cdot,\cdot,\mu_{M,h}^{\pi}) \}_{h \in [H]}.$

- dimPE(\mathcal{M}) := max_{π} dimE($\mathcal{M}_{|\pi}$).
- Essentially, dimPE(M) measures the complexity of the single-agent model class $M_{|\pi}$ for some (adversarially) chosen π .

Theorem (Informal)

Given a Mean-Field model class M, satisfying Realizability and Lipschitz continuity assumptions, learning an ε -NE with probability $1 - \delta$ only consumes samples at most:

$$\widetilde{O}(\textit{Poly}(\textit{dimPE}(\mathcal{M}), H, 1 + L_T, L_r, \frac{1}{\varepsilon}, \log \frac{|\mathcal{M}|}{\delta}))$$

Interpretation: Model-Based RL for MFGs is not Statistically Harder than Single-Agent RL

Theorem (Informal)

Given a Mean-Field model class M, satisfying Realizability and Lipschitz continuity assumptions, learning an ε -NE with probability $1 - \delta$ only consumes samples at most:

$$\widetilde{O}(\textit{Poly}(\textit{dimPE}(\mathcal{M}), H, 1 + L_T, L_r, \frac{1}{\varepsilon}, \log \frac{|\mathcal{M}|}{\delta}))$$

Interpretation: Model-Based RL for MFGs is not Statistically Harder than Single-Agent RL

- $\bullet \ dim PE(\mathcal{M}) \leq |\mathcal{S}||\mathcal{A}|$
 - Tabular MFGs is sample-efficient in general.

Theorem (Informal)

Given a Mean-Field model class M, satisfying Realizability and Lipschitz continuity assumptions, learning an ε -NE with probability $1 - \delta$ only consumes samples at most:

$$\widetilde{O}(\textit{Poly}(\textit{dimPE}(\mathcal{M}), H, 1 + L_T, L_r, \frac{1}{\varepsilon}, \log \frac{|\mathcal{M}|}{\delta}))$$

Interpretation: Model-Based RL for MFGs is not Statistically Harder than Single-Agent RL

- $\bullet \ dim PE(\mathcal{M}) \leq |\mathcal{S}||\mathcal{A}|$
 - Tabular MFGs is sample-efficient in general.
- Linear dynamics: $\mathbb{P}_{M,h}(s_{h+1}|s_h, a_h, \mu_h) = \phi(s_h, a_h)^\top U_h(\mu_h)\psi(s_{h+1})$

$$\phi \in \mathbb{R}^d, U \in \mathbb{R}^{d \times d'}, \psi \in \mathbb{R}^{d'}.$$

- In general $d' \gg d$; dimPE $(\mathcal{M}) = \widetilde{O}(d)$, while dimE $(\mathcal{M}) = \widetilde{O}(d')$.

Theorem (Informal)

Given a Mean-Field model class M, satisfying Realizability and Lipschitz continuity assumptions, learning an ε -NE with probability $1 - \delta$ only consumes samples at most:

$$\widetilde{O}(\textit{Poly}(\textit{dimPE}(\mathcal{M}), H, 1 + L_T, L_r, \frac{1}{\varepsilon}, \log \frac{|\mathcal{M}|}{\delta}))$$

Interpretation: Model-Based RL for MFGs is not Statistically Harder than Single-Agent RL

- $\bullet \ dim PE(\mathcal{M}) \leq |\mathcal{S}||\mathcal{A}|$
 - Tabular MFGs is sample-efficient in general.
- Linear dynamics: $\mathbb{P}_{M,h}(s_{h+1}|s_h, a_h, \mu_h) = \phi(s_h, a_h)^\top U_h(\mu_h)\psi(s_{h+1})$

$$- \phi \in \mathbb{R}^d, U \in \mathbb{R}^{d \times d'}, \psi \in \mathbb{R}^{d'}.$$

- In general $d' \gg d$; dimPE $(\mathcal{M}) = \widetilde{O}(d)$, while dimE $(\mathcal{M}) = \widetilde{O}(d')$.
- Not computationally efficient for now.

Outline

1. Introduction

- 2. Mean-Field Games
- 3. Main Results

4. Algorithm and Proof Sketch

5. Summary

A Model-Elimination Based Algorithms

Algorithm Sketch

For
$$k = 1, 2, ...,$$
 (start with $\mathcal{M}^1 := \mathcal{M}$)

1. Find a desired policy π^k

2. Construct
$$\mathcal{M}_{|\pi^k|}^k := \{M_{|\pi^k|} | M \in \mathcal{M}^k\}.$$

i.e. fix the density with π^k for each $M \in \mathcal{M}^k$.

3. Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k | M_{|\pi^k} \approx M_{\pi^k}^* \}.$

A Model-Elimination Based Algorithms

Algorithm Sketch

For
$$k = 1, 2, ...,$$
 (start with $\mathcal{M}^1 := \mathcal{M}$)

1. Find a desired policy π^k

2. Construct
$$\mathcal{M}_{|\pi^k|}^k := \{M_{|\pi^k|} | M \in \mathcal{M}^k\}.$$

i.e. fix the density with π^k for each $M \in \mathcal{M}^k$.

- 3. Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k | M_{|\pi^k} \approx M_{\pi^k}^*\}$
 - the only step we collect samples
 - essentially a single-agent model elimination procedure
 - all the agent take π^k except one doing exploration

A Model-Elimination Based Algorithms

Algorithm Sketch

For k = 1, 2, ..., (start with $\mathcal{M}^1 := \mathcal{M}$)

- 1. Find a **desired policy** π^k the key step
- 2. Construct $\mathcal{M}_{|\pi^k|}^k := \{M_{|\pi^k|} | M \in \mathcal{M}^k\}.$

i.e. fix the density with π^k for each $M \in \mathcal{M}^k$.

- 3. Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k | M_{|\pi^k} \approx M_{\pi^k}^*\}$
 - the only step we collect samples
 - essentially a single-agent model elimination procedure
 - all the agent take π^k except one doing exploration

Consider ϵ -cover for policy space $\Pi_{\epsilon} \coloneqq \{\pi_{\epsilon}^1, \pi_{\epsilon}^2 \dots\}$

ETHZÜRICh Department of Computer Science

Consider ϵ -cover for policy space $\Pi_{\epsilon} \coloneqq \{\pi_{\epsilon}^1, \pi_{\epsilon}^2 \dots\}$

Case 1: Non-concentrated setting

Consider $\epsilon\text{-cover}$ for policy space $\Pi_{\epsilon} \coloneqq \{\pi_{\epsilon}^1, \pi_{\epsilon}^2 \dots\}$

• $\exists \pi_{\varepsilon}^i \in \Pi_{\varepsilon}$, s.t. no $O(\varepsilon)$ -cluster with more than $\frac{|\mathcal{M}^k|}{2}$ models.

Case 1: Non-concentrated setting

Consider ϵ -cover for policy space $\Pi_{\epsilon} \coloneqq \{\pi_{\epsilon}^1, \pi_{\epsilon}^2 \dots\}$

- $\exists \pi_{\varepsilon}^{i} \in \Pi_{\varepsilon}$, s.t. no $O(\varepsilon)$ -cluster with more than $\frac{|\mathcal{M}^{k}|}{2}$ models.
- By choosing $\pi^k \leftarrow \pi^i_{\varepsilon}$, only models surrounds $M^*_{\scriptscriptstyle |\pi^i|}$ remains
- Therefore, $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$.

Case 2: Concentrated setting

- $\forall \pi_{\varepsilon}^i \in \Pi_{\varepsilon}$, there exists an $O(\varepsilon)$ -cluster with more than $\frac{|\mathcal{M}^k|}{2}$ models.
- Thanks to Lipschitz continuity
 - 1. Local alignment lemma: If $M_{|\pi} \approx M_{|\pi}^*$ and $\pi \approx NE$ of M, then $\pi \approx NE$ of M^*
 - 2. "Fixed point" structure: $\exists \pi_{\varepsilon}^i \in \Pi_{\varepsilon}$, s.t. $\pi_{\varepsilon}^i \approx NE$ of all models in that $O(\varepsilon)$ -cluster.

Case 2: Concentrated setting

By choosing $\pi^k = \pi^i_{\varepsilon}$, run model-elimination and get \mathcal{M}^{k+1} :

Case 2: Concentrated setting

Consider ϵ -cover for policy space $\Pi_{\epsilon} \coloneqq \{\pi_{\epsilon}^1, \pi_{\epsilon}^2 \dots\}$

By choosing $\pi^k = \pi^i_{\varepsilon}$, run model-elimination and get \mathcal{M}^{k+1} :

• If $Cluster^i \cap \mathcal{M}^{k+1} \neq \emptyset$:

 $M^*_{|\pi^i_{\varepsilon}} \in \mathtt{Cluster}^i$, and therefore, $\pi^i_{\varepsilon} \approx \mathsf{NE}$ of M^* .

Case 2: Concentrated setting

Consider ϵ -cover for policy space $\Pi_{\epsilon} := \{\pi_{\epsilon}^1, \pi_{\epsilon}^2 \dots\}$

By choosing $\pi^k = \pi^i_{\varepsilon}$, run model-elimination and get \mathcal{M}^{k+1} :

• If $Cluster^i \cap \mathcal{M}^{k+1} \neq \emptyset$:

 $M^*_{|\pi^i|} \in \mathtt{Cluster}^i$, and therefore, $\pi^i_{\varepsilon} \approx \mathsf{NE}$ of M^* .

• If $Cluster^i \cap \mathcal{M}^{k+1} = \emptyset$:

$$|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$$
 because of the size of that cluster.

Put Everything Together

Case 1: Non-concentrated setting

• Every time $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$

Case 2: Concentrated setting

• Either find a NE or $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$.

Put Everything Together

Case 1: Non-concentrated setting

• Every time $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$

Case 2: Concentrated setting

• Either find a NE or $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$.

Conclusion

- $O(\log |\mathcal{M}|)$ elimination steps at most.
- Each elimination costs $Poly(dimE(\mathcal{M}^k_{|\pi^k})) = Poly(dimPE(\mathcal{M}))$ samples.
- Q.E.D.

Outline

1. Introduction

- 2. Mean-Field Games
- 3. Main Results
- 4. Algorithm and Proof Sketch

5. Summary

Summary

Take Aways

- A new complexity measure: Partial Model-Based Eluder Dimension;
- A new model elimination based RL algorithm for centralized MFGs;

Under realizability and Lipschitz conditions, Model-Based RL for centralized MFGs is not Statistically Harder than Single-Agent RL.

Future Directions

- Computational efficiency;
- Decentralized setting;
- Equilibrium selection, steering, mechanism design.

Collaborators and Related Papers

Batuhan Yardim (ETH Zurich) Niao He (ETH Zurich) Andreas Krause (ETH Zurich)

- AISTATS 2024 J. Huang, B. Yardim, and N. He. On the Statistical Efficiency of Mean-Field Reinforcement Learning with General Function Approximation
 - ICML 2024 J. Huang, N. He. and A. Krause. Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Thanks!

References I

- Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W. (2020). Flambe: Structural complexity and representation learning of low rank mdps. *Advances in neural information processing systems*, 33:20095–20107.
- Bensoussan, A., Frehse, J., Yam, P., et al. (2013). *Mean field games and mean field type control theory*, volume 101. Springer.
- Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009). The complexity of computing a nash equilibrium. *Communications of the ACM*, 52(2):89–97.
- Dianetti, J., Ferrari, G., Fischer, M., and Nendel, M. (2021). Submodular mean field games: Existence and approximation of solutions. *The Annals of Applied Probability*, 31(6):2538–2566.
- Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G., Sun, W., and Wang, R. (2021). Bilinear classes: A structural framework for provable generalization in rl. In *International Conference on Machine Learning*, pages 2826–2836. PMLR.
- Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A. (2021). The statistical complexity of interactive decision making. *arXiv preprint arXiv:2112.13487*.

References II

- Guo, X., Hu, A., Xu, R., and Zhang, J. (2019). Learning mean-field games. *Advances in neural information processing systems*, 32.
- Huang, M., Malhamé, R. P., and Caines, P. E. (2006). Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle.
- Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and Schapire, R. E. (2017). Contextual decision processes with low bellman rank are pac-learnable. In *International Conference on Machine Learning*, pages 1704–1713. PMLR.
- Jin, C., Liu, Q., and Miryoosefi, S. (2021). Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms. *Advances in neural information processing systems*, 34:13406–13418.
- Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. *Japanese journal of mathematics*, 2(1):229–260.
- Levy, O., Cassel, A., Cohen, A., and Mansour, Y. (2022). Eluder-based regret for stochastic contextual mdps.

References III

- Osband, I. and Van Roy, B. (2014). Model-based reinforcement learning and the eluder dimension. *Advances in Neural Information Processing Systems*, 27.
- Pasztor, B., Bogunovic, I., and Krause, A. (2021). Efficient model-based multi-agent mean-field reinforcement learning. *arXiv preprint arXiv:2107.04050*.
- Perolat, J., Perrin, S., Elie, R., Laurière, M., Piliouras, G., Geist, M., Tuyls, K., and Pietquin, O. (2021). Scaling up mean field games with online mirror descent. *arXiv preprint arXiv:2103.00623*.
- Russo, D. and Van Roy, B. (2013). Eluder dimension and the sample complexity of optimistic exploration. *Advances in Neural Information Processing Systems*, 26.
- Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., and Langford, J. (2019). Model-based rl in contextual decision processes: Pac bounds and exponential improvements over model-free approaches. In *Conference on learning theory*, pages 2898–2933. PMLR.
- Uehara, M., Zhang, X., and Sun, W. (2021). Representation learning for online and offline rl in low-rank mdps. *arXiv preprint arXiv:2110.04652*.
- Xie, T., Foster, D. J., Bai, Y., Jiang, N., and Kakade, S. M. (2022). The role of coverage in online reinforcement learning. *arXiv preprint arXiv:2210.04157*.

References IV

- Yardim, B., Cayci, S., Geist, M., and He, N. (2023). Policy mirror ascent for efficient and independent learning in mean field games. In *International Conference on Machine Learning*, pages 39722–39754. PMLR.
- Zhang, F., Tan, V., Wang, Z., and Yang, Z. (2024). Learning regularized monotone graphon mean-field games. *Advances in Neural Information Processing Systems*, 36.