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Motivation

Sample efficiency (# of human annotations) is crucial in online RLHF.

Previous works focus on strategic exploration, while we study from a

underexplored perspective—transfer learning.

Rich scenarios for transfer learning:

- Reward models (RMs) from relevant tasks

- Easy-to-access metric other than human feedback

- Guidance from advanced LLMs

Key Question: How to improve sample efficiency in online RLHF

by leveraging those imperfect source RMs?

Setting and Assumptions

Standard Contextual Bandit Framework

S : prompt space; A: response space,

π : S → ∆(A): LLM as a policy. W.L.O.G., π(·|·) > 0 everywhere.

r∗: unknown true (human intrinsic) RM,

Learning objective:

π∗r∗ ← arg max
π

Jβ(π) := Es∼ρ,a∼π[r∗(s, a)]− βKL(π‖πref), (1)

with ρ as prompt distribution, πref as the reference policy, and yields:

π∗r∗(a|s) ∝ πref(a|s) exp(r
∗(s, a)

β
), (2)

Bradley-Terry preference model

Pr∗(I[a � ã]|s, a, ã) = Sigmoid(r(s, a)− r(s, ã)).

Standard Assumptions

Bounded rewards: r∗ ∈ [0, R],
Function approximation: A policy class Π is available.

(i) π∗r∗ ∈ Π. (ii) ∀π ∈ Π, ‖ log π
πref
‖∞ ≤ R

β .

Online RLHF with Reward Transfer

Besides human feedback, we access to W source RMs r1, ..., rW ∈ [0, R]:

no prior knowledge on their quality

due to Eq. (2), any LLM policy can be converted as a RM.

Transfer RL has been studied for decades.

But the KL-regularization in Eq. (1)makes something different!

Blessing of Regularization:
A Policy Coverage Perspective

Policy Coverage: The coverage coefficient of policy π̃ by another policy π:

Covπ̃|π := Es∼ρ,a∼π̃[π̃(a|s)
π(a|s)

].

Why Policy Coverage Perspective?

Fundamental complexity measure in online [1] and offline [2] RLHF.

Optimization/exploration on policy (LLM) space is more efficient in RLHF.

Key Lemma: special structure due to KL regularization (β > 0)

Lemma 3.1: For any π ∈ conv(Π) ∪ {π∗rw}W
w=1,

Covπ∗r∗|π = 1 + O(1) · Jβ(π∗r∗)− Jβ(π)
β

.

Interpretation

Covπ∗r∗|π can be identified by π’s value gap
- vastly distinguished from pure reward maximization

KL-reg “reconciles” exploration and exploitation

- exploiting policies with high policy value coincides with exploration!

Transfer Policy Optimization (TPO):
Provably Efficient Online Transfer Learning

Main Idea in TPO Algorithm Design: transfer from π with the lowest Covπ∗r∗|π

Principle 1: Transfer from the source policy with the highest policy value.

Principle 2: “Self-Transfer Learning”: treat the offline policy distilled from

collected data as a transfer candidate (see paper for details).

Theorem 4.4: In sharp constrast to Õ(
√
Complx(Π) · T ) regret in previous

works, our TPO achieves:

Õ(
√

WT ), when T is small

— Reduce dependence on complexity of Π to W

Õ(
√

T ), when T is large enough

— No dependence on complexity of Π

Empirical TPO: From Theory to Practice

Estimating policy value can be computationally expensive.

Is there a more accessible indicator for Covπ∗r∗|·? Yes, the win rates!

Lemma 5.1 [Informal] A lower bound for Covπ∗r∗|π:

Covπ∗r∗|π ≥ max
γ>0

1√
γ + 2 · Pr∗(π � π∗r∗)) log 1+γ

γ

(3)

Empirical algorithm design
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Main Idea: “Transfer from the expert until beat it”

- π∗r∗ is unknown, but the online learning policy πOnline converges to it.

- Transfer from arg maxπ Pr∗(π � πOnline).
- Formulate as a multi-armed bandit problem since win rates are unknown.

- Scalable in practice!

Experiments in Summarization Tasks with T5

Fine-tuning T5-small (60M) on XSum dataset.

4 source RMs:

- 2 metrics of similarity with human summary: (i) ROUGE (ii) BERTScore

- 2 advanced LLMs: (iii) T5-Base (250M) (iv) T5-Large (770M)

Llama3-8B to simulate human feedback.

Without

Transfer

Purely Exploit

ROUGE

Purely Exploit

T5-Large

Iter 1 52.1± 1.2 53.1± 1.1 49.5± 0.9
Iter 2 53.3± 1.6 54.5± 1.3 49.1± 0.4
Iter 3 54.0± 1.2 53.3± 1.5 50.6± 0.3

Table 1. Win rates (%) of the policies trained by empirical TPO competed with 3 baselines.
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