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A New Theoretical Formulation for DE-RL

• [Definition] Deployment Complexity
• An algorithm has deployment complexity K, if for arbitrary MDP, 𝜖, 𝛿 > 0, the algorithm:

• (1) return 𝜖-optimal policy w.p. 1 − 𝛿 after 𝑲 policy switching, 
• (2) collect 𝑁 trajectories in each deployment, with the constraint that 𝑁 is 

polynominal level in standard parameters.

• Overall Goal of Deployment-Efficient RL (DE-RL)
• Q1: Lower bound of the deployment complexity?
• Q2: Any algorithms matching lower bound?

To avoid trivial case



Related Work

• Empirical Literature
• [1] propose the conception of “Deployment-Efficient RL”, while a clear theoretical 

formulation is still an open problem.

• Theoretical Literature (low-switching cost RL)
• Tabular MDP [2] and Linear MDP [3]
• Relies on “adaptive policy switching strategy”, unrealistic when policy deployment is time-

consuming.
• Consider to reduce # of policy switching while achieving near-optimal regret;
• Only study deploying deterministic policy each time;

[1] Matsushima et. al., 2020, Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization
[2] Bai et. al., 2020, Provably efficient q-learning with low switching cost
[3] Gao et. al., 2021, A provably efficient algorithm for linear markov decision process with low switching cost

Result in sub-optimal 
deployment complexity



Linear MDP as a Concrete Example

• Episodic (Time-dependent) Linear MDP
• Horizon Length: 𝐻
• State-action feature: 𝜙 𝑠ℎ, 𝑎ℎ ∈ 𝑅𝑑, with ||𝜙 𝑠ℎ, 𝑎ℎ ||  ≤ 1
• Reward is linear: 𝑟ℎ 𝑠, 𝑎 = 𝜙𝑇 𝑠ℎ, 𝑎ℎ 𝜃ℎ
• Transition is linear: Ph 𝑠ℎ+1|𝑠ℎ, 𝑎ℎ = 𝜙𝑇 𝑠ℎ, 𝑎ℎ 𝜇ℎ 𝑠ℎ+1
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• Separately consider two settings
• Case 1: Can only deploy deterministic policy;

• Setting in previous low-switching cost setting
• Case 2: Allow to deploy arbitrary policy (deterministic/stochastic/non-Markovian);

• Largely omitted in previous literatures, but strictly lower deployment complexity.



Lower Bound of Deployment Complexity

• Case 1: Only allow to deploy deterministic policy;
• Lower bound: Ω(𝑑𝐻)
• Intuition: a (𝑑, 𝐻)-linear MDP has 𝑑𝐻 different “dimensions to explore”, while each 

deterministic policy can only explore one of them.

• Case 2: Allow to deploy arbitrary policy;
• Lower bound: Ω(𝐻/log 𝑁)
• Intuition: the agent can only push exploration forward for 𝑂(log 𝑁) time steps (layers).
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• Case 1: Only allow to deploy deterministic policy;
• Lower bound: Ω(𝑑𝐻)
• Intuition: a (𝑑, 𝐻)-linear MDP has 𝑑𝐻 different “dimensions to explore”, while each 

deterministic policy can only explore one of them.

• Case 2: Allow to deploy arbitrary policy;
• Lower bound: Ω(𝐻/log 𝑁)
• Intuition: the agent can only push exploration forward for 𝑂(log 𝑁) time steps (layer).

• Corollary for time-homogeneous linear MDP:
• Ω(𝑑) for Case 1 (deterministic policy setting)
• Ω min{𝑑, 𝐻 /log 𝑁) for Case 2 (arbitrary policy setting)



Algorithm with Near-Optimal Deployment Complexity

• High-level idea
• Explore each layer (time step) per 𝑂(𝑑) or 𝑂(1) deployments
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Algorithm with Near-Optimal Deployment Complexity

• Case 1: Only allow to deploy deterministic policy;
• Algorithm: LSVI-UCB [Jin et. al., 2020] + Layer-by-layer
• A novel elliptical potential lemma (Lem. 4.2)
• Guarantees:

• Deployment complexity 𝐾: 𝑂(𝑑𝐻); 

• (Asmptotically) # of Trajs 𝑁: 𝑂(𝐻4𝑑3

𝜖2 log2 𝐻𝑑
𝛿𝜖

) 
• Remarks:

• Layer-by-layer strategy is not necessary for deployment efficiency in case 1, but some additional 
benefits (see Appx. C.4).

• Similar analysis can be extended to reward-free setting



Algorithm with Near-Optimal Deployment Complexity

• Case 2: Allow to deploy arbitrary policy;
• Algorithm: a new batch exploration algorithm

• Explore in a layer-by-layer manner
• For each layer

• Use a novel covariance matrix estimation method to evaluate the exploration ability of given policies;
• Plus a bonus-term driven method to find a set of deterministic policies cover all the dimensions.

• Require an additional reachability assumption 𝜈min.
• Guarantees:

• Deployment complexity 𝐾: Θ(𝐻); 
• (Asmptotically) # of Trajs 𝑁: Poly(𝑑, 𝐻, 1

𝜖
, log 1

𝛿
, 1

𝜈min
) 

• Remarks:
• Naturally a reward-free exploration
• Open problem: is it possible to remove dependence on 𝜈min



Thanks!
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