EHzürich

Joogle

Can RLHF be More Efficient with Imperfect Reward Models? A Policy Coverage Perspective

Jiawei Huang¹ Bingcong Li¹ Christoph Dann² Niao He¹

Contact Email: jiawei.huang@inf.ethz.ch

¹ETH Zurich ²Google Research

Motivation

- Sample efficiency (# of human annotations) is crucial in online RLHF.
- Previous works focus on strategic exploration, while we study from a different perspective—transfer learning.
- Rich scenarios with imperfect but related source rewards available:
 - Reward models from relevant tasks
 - Easy-to-access evaluation metric other than human feedback
 - Guidance from advanced LLMs

Key Question: How to improve sample efficiency in online RLHF by leveraging those source reward models?

Setting and Assumptions

- A Contextual Bandit Framework
- \mathcal{S} : prompt space; \mathcal{A} : response space,
- $\pi: \mathcal{S} \to \Delta(\mathcal{A})$: LLM as a policy. W.L.O.G., $\pi(\cdot|\cdot) > 0$ everywhere.
- r^* : unknown true (human intrinsic) reward model,
- Learning objective:

$$\pi_{r^*}^* \leftarrow \arg\max_{\pi} J_{\beta}(\pi) := \mathbb{E}_{s \sim \rho, a \sim \pi}[r^*(s, a)] - \beta \mathbb{KL}(\pi \| \pi_{\texttt{ref}}),$$

with ρ as prompt distribution, π_{ref} as the reference policy, and yields:

TPO: A Transfer Learning Algorithm with Provable Benefits

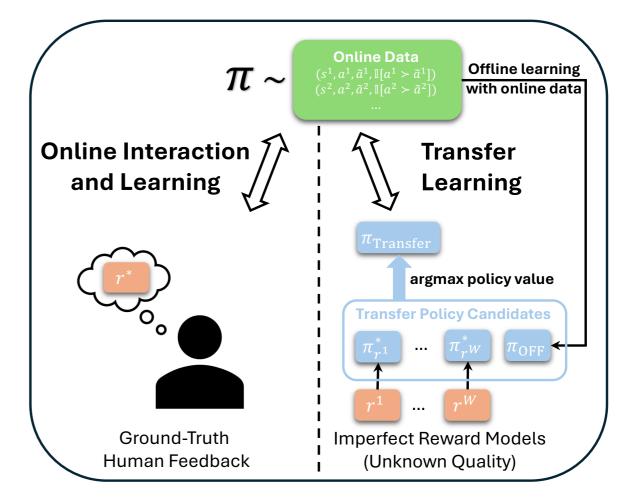


Figure 1. Illustration of **TPO** (Transfer Policy Optimization). $\pi_{r^w}^*$ denotes the optimal policy w.r.t. r^w .

Theoretical Guarantees: Define $\Delta_{\min} := \min_{w \in [W]} J_{\beta}(\pi_{r^*}^*) - J_{\beta}(\pi_{r^w}^*)$. • When $T \leq \widetilde{O}(\frac{1}{\Delta_{\min}^2})$, $\operatorname{Reg}(T) = \widetilde{O}(\sqrt{WT})$ - Reduce dependence on complexity of Π to W• When $T > \widetilde{O}(\frac{1}{\Delta_{\min}^2})$, $\operatorname{Reg}(T) = \widetilde{O}(\sqrt{T})$ - No dependence on complexity of Π

Empirical TPO: From Theory to Practice

(1)

$$\pi_{r^*}^*(a|s) \propto \pi_{\texttt{ref}}(a|s) \exp(\frac{r^*(s,a)}{\beta}),$$

- Bradley-Terry preference model (σ denotes sigmoid function)

$$\mathbb{P}_{r^*}(\mathbb{I}[a \succ \widetilde{a}] | s, a, \widetilde{a}) = \sigma(r(s, a) - r(s, \widetilde{a})).$$

Standard Assumptions

- Bounded rewards: $r^* \in [0, R]$,
- Function approximation: A policy class Π is available.
 (i) π^{*}_{r*} ∈ Π. (ii) ∀π ∈ Π, || log π/πref ||∞ ≤ R/β.

Online RLHF with Reward Transfer Setup

- Online human feedback: Query to $\mathbb{P}_{r^*}(\cdot|s, a, \widetilde{a})$ with arbitrary s, a, \widetilde{a} .
- Source reward models: W source RMs $r^1, ..., r^W \in [0, R]$ available,
 - no prior knowledge on their quality
 - due to Eq. (2), any LLM policy can be converted as a RM.

Blessing of Regularization: A Policy Coverage Perspective

Transfer RL has been studied for decades. But the KL-regularization in Eq. (1) makes something different!

Policy Coverage: The coverage coefficient of policy $\tilde{\pi}$ by another policy π :

$$\operatorname{Cov}^{\widetilde{\pi}|\pi} := \mathbb{E}_{s \sim \rho, a \sim \widetilde{\pi}} [\frac{\widetilde{\pi}(a|s)}{\pi(a|s)}]$$

Why Policy Coverage Perspective?

- It serves as fundamental complexity measure in both online [1] and offline [2] RLHF.
- Optimization and exploration on policy (LLM) space is more efficient in RLHF

Key Lemma: special structure due to KL regularization ($\beta > 0$)

Lemma 3.1: For any $\pi \in \operatorname{conv}(\Pi) \cup {\{\pi_{r^w}^*\}_{w=1}^W}$,

- (2)
- TPO estimates policy value to identify the one cover $\pi^*_{r^*}$ the best.
- However, value estimation is computationally expensive.
- Is there a more accessible indicator for $Cov^{\pi^*_{r^*}|}$? Yes, the win rates!
- Lemma 5.1 A lower bound for $Cov^{\pi_{r^*}^*|\pi}$ given an arbitrary comparator π_{Comp} :

$$\operatorname{Cov}^{\pi_{r^*}^*|\pi} \ge \max_{\gamma>0} (\sqrt{(\gamma + 2 \cdot \mathbb{P}_{r^*}(\pi \succ \pi_{\operatorname{Comp}}))} \log \frac{1+\gamma}{\gamma} + \sqrt{\frac{J_{\beta}(\pi_{r^*}^*) - J_{\beta}(\pi_{\operatorname{Comp}})}{2\beta}})^{-1}$$

- Inspired empirical algorithm design:
 - Transfer policy selection as a Multi-Armed Bandit problem.
 - Selecting policy with high win rate by UCB.
 - Compute π_{Online} by any online method (e.g. iterative DPO, XPO),
 - Take π_{Online} as the comparator π_{Comp} , which continuously improves
 - Transfer from the expert until beat it
 - Scalable in practice!

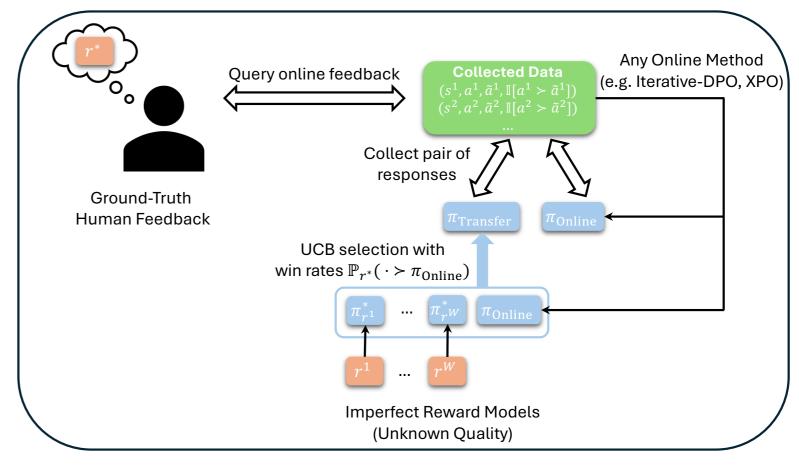


Figure 2. Illustration of empirical TPO

Experiments in Summarization Tasks with T5

 $\operatorname{Cov}^{\pi_{r^*}^*|\pi} = 1 + O(e^{\frac{2R}{\beta}}) \cdot \frac{J_{\beta}(\pi_{r^*}^*) - J_{\beta}(\pi)}{\beta}.$

Interpretation

• $\operatorname{Cov}^{\pi^*_{r^*}|\pi}$ can be identified by π 's value gap

- vastly distinguished from pure reward maximization

- KL-reg "reconciles" exploration and exploitation
 - exploiting policies with high policy value coincides with exploration!
- Theorem 3.2 [Informal]: Offline learning on the online dataset collected by any no-regret algorithm yields a policy π_{OFF} converges to $\pi_{r^*}^*$ at rate of $\widetilde{O}(T^{-1/2})$,
 - no dependence on complexity of $\Pi!$
 - faster than the convergence rates in existing online RLHF literature [1].

New Insights for Transfer Learning–Find and transfer from π with the lowest $Cov^{\pi^*_{r^*}|\pi}$

- Principle 1: Transfer from the policy with the highest policy value.
- Principle 2: Keep tracking π_{OFF} and treat it as a transfer candidate.
 - we call this "self-transfer learning", and call such a $\pi_{\rm OFF}$ "self-transfer policy".

• Fine-tuning T5-small (80M) on XSum dataset.

- 4 source reward models:
 - 2 metrics of similarity with human summary: (a) ROUGE score (b) BERTScore
 - 2 advanced LLMs: (c) T5-Base (250M) (d) T5-Large (770M)
- Llama3-8B to simulate human feedback.

	Without	Purely Exploit	Purely Exploit
	Transfer	ROUGE	T5-Large
Iter 1	52.1 ± 1.2	53.1 ± 1.1	49.5 ± 0.9
lter 2	53.3 ± 1.6	54.5 ± 1.3	49.1 ± 0.4
Iter 3	54.0 ± 1.2	53.3 ± 1.5	50.6 ± 0.3

Table 1. Win rates (%) of the policies trained by empirical **TPO** competed with 3 baselines.

Interpretation

- Transfer learning makes online RLHF more efficient.
- Without prior knowledge, quickly adapt to the best source model (T5-Large) without being trapped by low-quality ones (ROUGE score).
- Switch back to online learning when source models are no longer helpful.

References

[1] Xie et al., Exploratory preference optimization: Harnessing implicit q*-approximation for sample-efficient rlhf.
 [2] Liu et al., Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an adversarial regularizer.