Can RLHF be More Efficient with Imperfect Reward Models?
A Policy Coverage Perspective
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= Sample efficiency (# of human annotations) is crucial in online RLHF.

= Previous works focus on strategic exploration, while we study from a different
perspective—transfer learning.

= Rich scenarios with imperfect but related source rewards available:
- Reward models from relevant tasks
- Easy-to-access evaluation metric other than human feedback
- Guidance from advanced LLMs

Key Question: How to improve sample efficiency in online RLHF
by leveraging those source reward models?

Setting and Assumptions

A Contextual Bandit Framework

= §: prompt space; A: response space,

= 7:S — A(A): LLM as a policy. W.L.O.G., 7(:|-) > 0 everywhere.
= r*; unknown true (human intrinsic) reward model,

= Learning objective:

T <— argmax Jg(m) .= Egop gr|77(8, a)] — BKL(7||Tret), (1)

™

with p as prompt distribution, m.¢ as the reference policy, and yields:

r*(s, a)
5

= Bradley-Terry preference model (o denotes sigmoid function)

P (Ila > al|s,a,a) = o(r(s,a) — (s, a)).

m(als) X mres(als) exp(

Standard Assumptions

- Bounded rewards: r* € [0, R),

= Function approximation: A policy class II is available.
(i) 7o e 1L (i) vr € 11, [[log |l < %.

Online RLHF with Reward Transfer Setup
= Online human feedback: Query to P.(-

s, a,a) with arbitrary s, a, a.

- Source reward models: W source RMs 1, ...+ € [0, R] available,
- no prior knowledge on their quality
- due to Eq. (2), any LLM policy can be converted as a RM.

Blessing of Regularization: A Policy Coverage Perspective

), 2)

Transfer RL has been studied for decades.
But the KL-regularization in Eq. (1) makes something different!

Policy Coverage: The coverage coefficient of policy m by another policy

].
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Why Policy Coverage Perspective?
= |t serves as fundamental complexity measure in both online [1] and offline [2] RLHF.
= Optimization and exploration on policy (LLM) space is more efficient in RLHF

Key Lemma: special structure due to KL regularization (8 > 0)

Lemma 3.1: For any 7 € conv(I) U {7}V

w=1>

COVT[':*‘W — 1 _|_ O(@%) . Jﬁ(ﬂ-r*>ﬁ_ Jﬁ<ﬂ->

Interpretation

- Cov™I™ can be identified by 7’s value gap
- vastly distinguished from pure reward maximization
« KL-reg “reconciles” exploration and exploitation
- exploiting policies with high policy value coincides with exploration!

- Theorem 3.2 [Informall: Offline learning on the online dataset collected by any no-regret
algorithm yields a policy mger converges to % at rate of O(T~1/?),
- no dependence on complexity of II!
- faster than the convergence rates in existing online RLHF literature [1].

New Insights for Transfer Learning—Find and transfer from 7 with the lowest Cov™ /"
= Principle 1: Transfer from the policy with the highest policy value.

= Principle 2: Keep tracking mgrr and treat it as a transfer candidate.
- we call this “self-transfer learning”, and call such a mger “self-transfer policy”.
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TPO: A Transfer Learning Algorithm with Provable Benefits
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Ground-Truth Imperfect Reward Models
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Figure 1. lllustration of TPO (Transfer Policy Optimization). 7, denotes the optimal policy w.r.t. .

Theoretical Guarantees: Define A, := ming,ep Ja(m) — Jp(m).

* When T' < 5(A%. ), Reg(T) = O(VWT) — Reduce dependence on complexity of IT to W

- When T > 5(A%_ ), Reg(T') = O(v/T) — No dependence on complexity of II

Empirical TPO: From Theory to Practice

= TPO estimates policy value to identify the one cover 7. the best.

- However, value estimation is computationally expensive.

- Is there a more accessible indicator for Cov™/"? Yes, the win rates!

- Lemma 5.1 A lower bound for Cov™ /™ given an arbitrary comparator TComp:

1+~ Ja(m).) — Ja(Tcomp) | 1
Y i \/ 2p )

Cov™ ™ > maac(\/(v +2-Po(m > Tcomp)) log
>

= Inspired empirical algorithm design:
- Transfer policy selection as a Multi-Armed Bandit problem.
o Selecting policy with high win rate by UCB.
- Compute monine by any online method (e.g. iterative DPO, XPO),
o Take Toniine as the comparator mcomp, Which continuously improves

o Transfer from the expert until beat it
- Scalable in practice!

Any Online M%

(e.g. Iterative-DPO, XPO)
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Figure 2. lllustration of empirical TPO
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Experiments in Summarization Tasks with Ts

= Fine-tuning T5-small (B0OM) on XSum dataset.

= 4 source reward models:
- 2 metrics of similarity with human summary: (a) ROUGE score (b) BERTScore
- 2 advanced LLMs: (c) T5-Base (250M) (d) T5-Large (770M)

= Llama3-8B to simulate human feedback.

Without Purely Exploit Purely Exploit

Transfer ROUGE T5-Large
lter 1 521+1.2 53.1=x1.1 49.5 4+ 0.9
lter 2 53.3+£1.6 54.5+1.3 49.14+0.4
lter 3 54.0£1.2 53.3+£1.5 50.6 £0.3

Table 1. Win rates (%) of the policies trained by empirical TPO competed with 3 baselines.

Interpretation
= Transfer learning makes online RLHF more efficient.

- Without prior knowledge, quickly adapt to the best source model (T5-Large) without being
trapped by low-quality ones (ROUGE score).

= Switch back to online learning when source models are no longer helpful.
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