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Motivation

Sample efficiency (# of human annotations) is crucial in online RLHF.

Previous works focus on strategic exploration, while we study from a different

perspective—transfer learning.

Rich scenarios with imperfect but related source rewards available:

- Reward models from relevant tasks

- Easy-to-access evaluation metric other than human feedback

- Guidance from advanced LLMs

Key Question: How to improve sample efficiency in online RLHF

by leveraging those source reward models?

Setting and Assumptions

A Contextual Bandit Framework

S : prompt space; A: response space,
π : S → ∆(A): LLM as a policy. W.L.O.G., π(·|·) > 0 everywhere.
r∗: unknown true (human intrinsic) reward model,

Learning objective:

π∗r∗ ← arg max
π

Jβ(π) := Es∼ρ,a∼π[r∗(s, a)]− βKL(π‖πref), (1)

with ρ as prompt distribution, πref as the reference policy, and yields:

π∗r∗(a|s) ∝ πref(a|s) exp(r
∗(s, a)

β
), (2)

Bradley-Terry preference model (σ denotes sigmoid function)

Pr∗(I[a � ã]|s, a, ã) = σ(r(s, a)− r(s, ã)).

Standard Assumptions

Bounded rewards: r∗ ∈ [0, R],
Function approximation: A policy class Π is available.
(i) π∗r∗ ∈ Π. (ii) ∀π ∈ Π, ‖ log π

πref
‖∞ ≤ R

β .

Online RLHF with Reward Transfer Setup

Online human feedback: Query to Pr∗(·|s, a, ã) with arbitrary s, a, ã.

Source reward models: W source RMs r1, ..., rW ∈ [0, R] available,
- no prior knowledge on their quality

- due to Eq. (2), any LLM policy can be converted as a RM.

Blessing of Regularization: A Policy Coverage Perspective

Transfer RL has been studied for decades.

But the KL-regularization in Eq. (1)makes something different!

Policy Coverage: The coverage coefficient of policy π̃ by another policy π:

Covπ̃|π := Es∼ρ,a∼π̃[π̃(a|s)
π(a|s)

].

Why Policy Coverage Perspective?

It serves as fundamental complexity measure in both online [1] and offline [2] RLHF.

Optimization and exploration on policy (LLM) space is more efficient in RLHF

Key Lemma: special structure due to KL regularization (β > 0)

Lemma 3.1: For any π ∈ conv(Π) ∪ {π∗rw}W
w=1,

Covπ∗r∗|π = 1 + O(e
2R
β ) · Jβ(π∗r∗)− Jβ(π)

β
.

Interpretation

Covπ∗r∗|π can be identified by π’s value gap
- vastly distinguished from pure reward maximization

KL-reg “reconciles” exploration and exploitation

- exploiting policies with high policy value coincides with exploration!

Theorem 3.2 [Informal]: Offline learning on the online dataset collected by any no-regret

algorithm yields a policy πOFF converges to π∗r∗ at rate of Õ(T−1/2),
- no dependence on complexity of Π!
- faster than the convergence rates in existing online RLHF literature [1].

New Insights for Transfer Learning—Find and transfer from π with the lowest Covπ∗r∗|π

Principle 1: Transfer from the policy with the highest policy value.

Principle 2: Keep tracking πOFF and treat it as a transfer candidate.

- we call this “self-transfer learning”, and call such a πOFF “self-transfer policy”.

TPO: A Transfer Learning Algorithmwith Provable Benefits
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Figure 1. Illustration of TPO (Transfer Policy Optimization). π∗rw denotes the optimal policy w.r.t. rw.

Theoretical Guarantees: Define ∆min := minw∈[W ] Jβ(π∗r∗)− Jβ(π∗rw).
When T ≤ Õ( 1

∆2
min

), Reg(T ) = Õ(
√

WT ) — Reduce dependence on complexity of Π to W

When T > Õ( 1
∆2

min
), Reg(T ) = Õ(

√
T ) — No dependence on complexity of Π

Empirical TPO: From Theory to Practice

TPO estimates policy value to identify the one cover π∗r∗ the best.

However, value estimation is computationally expensive.

Is there a more accessible indicator for Covπ∗r∗|·? Yes, the win rates!

Lemma 5.1 A lower bound for Covπ∗r∗|π given an arbitrary comparator πComp:

Covπ∗r∗|π ≥ max
γ>0

(
√

(γ + 2 · Pr∗(π � πComp)) log 1 + γ

γ
+

√
Jβ(π∗r∗)− Jβ(πComp)

2β
)−1

Inspired empirical algorithm design:

- Transfer policy selection as a Multi-Armed Bandit problem.

◦ Selecting policy with high win rate by UCB.
- Compute πOnline by any online method (e.g. iterative DPO, XPO),
◦ Take πOnline as the comparator πComp, which continuously improves
◦ Transfer from the expert until beat it

- Scalable in practice!

…𝑟! 𝑟"

…𝜋#!
∗ 𝜋#"

∗

𝜋%&'()*+&

UCB selection with
win rates ℙ#∗(	⋅	≻ 𝜋,(-.(+)

𝜋,(-.(+

𝑟∗

Ground-Truth 
Human Feedback

Imperfect Reward Models
(Unknown Quality)

Collected Data
(𝑠!, 𝑎!, 𝑎%!, 𝕀[𝑎! ≻ 𝑎%!])
(𝑠", 𝑎", 𝑎%", 𝕀[𝑎" ≻ 𝑎%"])

…

Any Online Method
(e.g. Iterative-DPO, XPO)Query online feedback

𝜋,(-.(+

Collect pair of 
responses

Figure 2. Illustration of empirical TPO

Experiments in Summarization Tasks with T5

Fine-tuning T5-small (80M) on XSum dataset.

4 source reward models:

- 2 metrics of similarity with human summary: (a) ROUGE score (b) BERTScore

- 2 advanced LLMs: (c) T5-Base (250M) (d) T5-Large (770M)

Llama3-8B to simulate human feedback.

Without

Transfer

Purely Exploit

ROUGE

Purely Exploit

T5-Large

Iter 1 52.1± 1.2 53.1± 1.1 49.5± 0.9
Iter 2 53.3± 1.6 54.5± 1.3 49.1± 0.4
Iter 3 54.0± 1.2 53.3± 1.5 50.6± 0.3

Table 1. Win rates (%) of the policies trained by empirical TPO competed with 3 baselines.

Interpretation

Transfer learning makes online RLHF more efficient.

Without prior knowledge, quickly adapt to the best source model (T5-Large) without being

trapped by low-quality ones (ROUGE score).

Switch back to online learning when source models are no longer helpful.
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